Panasonic ideas for life

PT-DZ770 Series

1-Chip DLP ${ }^{\text {ww }}$ Projectors
PT-DZ770K
PT-DZ770LK PT-DW740S
PT-DW740LS
PT-DX810S
PT-DX810LS

Bright 8,200 Im and Crisp, Vivid Pictures for Various Applioations

* The PT-DX810S/DX810LS has $8,200 \mathrm{Im}$ and the PT-DZ770K/DZ770LK/DW740S/DW740LS has 7,000 Im of brightness.

Detailed Images and Versatile Functions in a Compact Cabinet

Panasonic's unique optical engine in the PT-DZ770 Series projector produces $8,200 \mathrm{Im}^{* 1}$ or $7,000 \mathrm{Im}^{* 2}$ of brightness and high-quality images. This combines with a host of terminals and advanced management functions to provide high reliability and hassle-free maintenance. Ideal for a wide variety of applications, from education and business to stage performance.

Vivid Picture Quality with High Brightness

Bright 8,200/7,000 Im from Compact Body New lamp drive system has helped to make the body as compact as Panasonic's PT-DZ6700 Series ${ }^{* 3}$, while providing high brightness of $8,200 \mathrm{Im}$ for the PT-DX810S and 7,000 Im for the PT-DZ770K/DW740S.

RGB Booster Significantly Improves Color Reproduction

The RGB Booster achieves high image quality with levels of color reproduction and brightness that make each color stand out. It combines Panasonic's proprietary Vivid Color Control technology with a newly engineered Lamp Modulation Drive System for a 1-chip DLP ${ }^{\text {TM }}$ projector that produces bright and vivid colors.

- Vivid Color Control

This unique control technology optimizes the use of the color segment areas of the color wheel. It increases the brightness of each

RGB color by minimizing the unallocated portions between the colors, to achieve truly vivid coloring.

- Lamp Modulation Drive System

With the advanced Iamp modulation technology, the projector is able to control the lamp intensity for each of the red, green, blue, and white segments of the color wheel separately. Because the actual light output is controlled in relation to each color segment, light usage is optimized and color balance is obtained without lowering the brightness. This results in bright vivid images with increased color fidelity.

Detail Clarity Processor Brings Depth and Clarity to Details

This advanced image-processing circuit analyzes the video signal frequency range for each scene by extracting data on the distribution of high, mid, and low-frequency components, and brings out fine details accordingly. The resulting images have a more natural, three-dimensional appearance with crisp, clear detail.

- Conventional system

Because the lamp power was fixed in conventional projectors, color
1 reproduction was enhanced by sacrificing brightness.

By modulating the lamp power, we can
 maximize the color reproduction of each color without sacrificing brightness. Light usage is optimized, and color balance is obtained without lowering the brightness.

System Daylight View 2 for Enhanced Color Perception

Image details are less clear when a projector is used in a room with the lights on. Panasonic's System Daylight View 2 improves brightness perception by adjusting sharpness, gamma curves, and color corrections. This produces crisper, more stunning images with vivid colors even under bright conditions

DICOM Simulation Mode ${ }^{* 4}$

This imaging mode is similar to DICOM part 14, which is a medical imaging standard. It reproduces X-ray images with remarkable clarity.

Rec. 709 Mode for HDTV Projection

Optimal color reproduction can be achieved by selecting this mode, compliant with ITU-R Recommendation BT.709, when images from an HDTV source are projected.

Easy Maintenance and Superior Reliability

Eco Filter that Needs No Maintenance for up to $\mathbf{1 2 , 0 0 0}$ Hours ${ }^{* 5}$

The original Eco Filter consists of two Micro Cut Filters (electrostatic filters), a pre-filter and a main filter, which use an ion effect to
 collect extremely small dust particles. The pre-filter has a honeycomb configuration and the main filter is pleated to achieve a large surface area that raises its dust collecting performance. Thanks to these features, the Eco Filter has a replacement cycle of up to 12,000 hours*5, which reduces the hassle of maintenance. And, as an environmental consideration, the filter can be washed with water and reused*6.

Dual-Lamp System Prevents Image Interruptions

The Dual-Lamp System eliminates the need to interrupt a presentation if a lamp should burn out (in dual-lamp operation mode). The Lamp Relay mode also operates the lamps alternately to enable 24/7 projector operation. The replacement lamp unit ${ }^{\star 7}$ can be used with all of the Panasonic PT-DW730 Series**, PT-DZ6700 Series*3 and PT-DZ570 Series ${ }^{* 9}$ projectors. This reduces the number of lamp types that need to be kept in stock when multiple projectors are used.

Liquid Cooling System Attains a High Level of Reliability

Panasonic's unique liquid cooling system directly cools the DLP ${ }^{m i}$ chip to improve performance and enable operation up to $45^{\circ} \mathrm{C}$ $\left(113^{\circ} \mathrm{F}\right) .^{* 10}$ This allows use in a wider variety of environments, while stabilizing performance and keeping the unit quiet even in harsh conditions. It also contributes to realizing the compact body. Plus, Panasonic's liquid cooling system is hermetically sealed, so you don't need to replenish the liquid.

System Integration Flexibility

Flexible Installation

The wide adjustment range of the powered horizontal/vertical lens shift function assures convenience and versatility during installation. It lets you easily make adjustments with the remote control. The unit can also be rotated 360 degrees vertically. This means you can install it at any angle you want, to accommodate different installation conditions.

A Wide Selection of Optional Lenses

Choose from a wide lineup of optional lenses for your system, including short-throw zoom lens, long-throw zoom and fixed-throw lenses for rear projection use. The additional lenses make it easy to adapt your projector to the installation site.
 ET-DLE080

Multi-Screen Support System Seamlessly Connects Multiple Screens

The Multi-Screen Support System optimally adjusts multiple screens: Edge blending, color matching and multi-screen processor.

- Edge Blending

The edges of adjacent screens can be blended and their luminance controlled.

- Color Matching

This function corrects for slight variations in the color reproduction range of individual projectors

- Multi-Screen Processor

The PT-DZ770 Series projector can project large, multi-screen images without any additional equipment. Up to 100 units (10×10) can be edge-blended at a time.

Side-by-Side Function*11

The PT-DZ770K and PT-DW740S can simultaneously display images from two sources onto a single screen. For example, you can display a PC image on the left and a video image on the right. Taking advantage of the wide-screen projection, this function gives you a host of new application possibilities to explore.

Multi Projector Monitoring \& Control Software

Panasonic's original freeware, "Multi Projector Monitoring \& Control Software," allows the user to control and monitor multiple projectors at the same time via LAN. Projectors can be scheduled to turn on and off at a certain hour everyday. When a problem occurs, an alarm message is sent to the monitoring/controlling PC.

Crestron RoomView ${ }^{\text {TM }}$ and AMX Device Discovery

The LAN terminal allows a computer connected to the network to use Crestron RoomView ${ }^{\text {TM }}$ application software to manage and control system devices. Besides, The AMX Device Discovery technology is built in the PT-DZ770 Series projector.

Standby Mode: Eco*12

The PT-DZ770 Series projector has attained a low standby power level of $0.2 \mathrm{~W}^{* 13}$ (Standby mode: ECO). It also helps to slash running costs, and reduces environmental impact.

Other Valuable Features

- Multiple terminals with HDMI compatibility
- 3D color management system
- HD IP conversion
- Digital noise reduction
- Dynamic sharpness control
- Web browser control/monitoring and e-mail message alert
- PJLink ${ }^{\text {m }}$ (Class 1) compatibility
- Scheduling function
- 30m long-range wireless remote control
- Mechanical lens shutter
- Direct Power Off allows unplugging the power cord right after use

The PT-DZ770LK, PT-DW740LS and PT-DX810LS are sold without lenses. The specifications are the same as those of the PT-DZ770K/DW740S/DX810S.

Recommended Applications

The PT-DZ770 Series projector boasts superior image quality, flexible installation, and easy maintenance, making either model an ideal choice for use in classrooms, auditoriums, houses of worship, museums, and much more.

The PT-DZ770 Series projector is carefully manufactured at the Panasonic factory in Japan, under strict quality control. This is another, very important advantage of a Panasonic projector.

Ecology-conscious Design

Panasonic works from every angle to minimize environmental impact in the product design, production and delivery processes, and in the performance of the product during its life cycle. The PT-DZ770 Series projector reflects the following ecological considerations.

- No halogenated flame retardants are used in the cabinet.
- Lead-free solder is used to mount components to the printed circuit boards.
- Lamp power switching further reduces power consumption.
- Standby power consumption of only $0.2 \mathrm{~W}^{\star 13}$ has been achieved (standby MODE: ECO). ${ }^{\star 12}$
- Auto Power Save activates standby mode when no signal is input.

Silver/black models
Silver cabinet models of the PT-DZ770K and PT-DZ770LK are also available as built-to-order.
The specifications are the same as those of the PT-DZ770K and PT-DZ770LK.

Black cabinet models of the PT-DW740S/ DX810S and PT-DW740LS/DX810LS are also available as built-to-order.

The specifications are the same as those of the PT-DW740S/DX810S and PT-DW740LS/DX810LS respectively.

*1 PT-DX810S/DX810LS

*2 PT-DZ770K/DZ770LK/DW740S/DW740LS
*3 PT-DZ6710/DZ6710L/DZ6700/DZ6700L/DW6300S/DW6300LS/D6000S/D6000LS/ D5000S/D5000LS
*4 This product is not a medical instrument. Do not use it for actual medical diagnosis.
*5 The usage environment affects the duration of the filter.
*6 When washing with water, please follow the procedures listed in the operating instructions. Also, we recommend replacing the filter with a new one after it has been washed and reused twice. If the filter is not sufficiently clean after washing, replace it with a new one.
*7 ET-LAD60A/LAD60AW
*8 PT-DW730S/DW730LS/DX800S/DX800LS

Projection distance

unit: meters (feet)
PT-DZ770K (16:10 aspect ratio)

Diagonal image size [throw ratio]	Throw distance												
	$\begin{aligned} & \text { ET-DLE080 } \\ & \text { [0.8-1.0:1] } \end{aligned}$		$\begin{aligned} & \hline \text { ET-DLE150 } \\ & \text { [1.3-1.9:1] } \end{aligned}$		Supplied Iens[1.7-2.4:1]		$\begin{aligned} & \hline \text { ET-DLE250 } \\ & \text { [2.3-3.6:1] } \end{aligned}$		$\begin{aligned} & \text { ET-DLE350 } \\ & \text { [3.6-5.4:1] } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ET-DLE450 } \\ & \text { [5.4-8.6:1] } \end{aligned}$		$\begin{gathered} \hline \text { ET-DLE055 } \\ {[0.8: 1]} \end{gathered}$
	min.	max.											
$\begin{aligned} & 1.27 \\ & {\left[50^{\prime \prime}\right]} \end{aligned}$	$\begin{aligned} & \hline 0.82 \\ & (2.7) \end{aligned}$	$\begin{aligned} & \hline 1.04 \\ & (3.4) \end{aligned}$	$\begin{aligned} & \hline 1.38 \\ & (4.5) \end{aligned}$	$\begin{aligned} & \hline 2.01 \\ & (6.6) \end{aligned}$	$\begin{aligned} & \hline 1.82 \\ & (6.0) \end{aligned}$	$\begin{aligned} & \hline 2.52 \\ & (8.3) \end{aligned}$	$\begin{aligned} & \hline 2.42 \\ & (7.9) \end{aligned}$	$\begin{gathered} \hline 3.87 \\ (12.7) \end{gathered}$	$\begin{gathered} \hline 3.80 \\ (12.5) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 5.81 \\ & (19.1) \end{aligned}$	$\begin{gathered} \hline 5.66 \\ (18.6) \end{gathered}$	$\begin{array}{r} \hline 9.12 \\ (29.9) \end{array}$	$\begin{aligned} & \hline 0.83 \\ & (2.7) \\ & \hline \end{aligned}$
$\begin{aligned} & 2.03 \\ & {\left[80^{\prime \prime}\right]} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.35 \\ & (4.4) \end{aligned}$	$\begin{aligned} & \hline 1.68 \\ & (5.5) \end{aligned}$	$\begin{gathered} \hline 2.23 \\ (7.3) \end{gathered}$	$\begin{gathered} 3.25 \\ (10.7) \end{gathered}$	$\begin{aligned} & \hline 2.95 \\ & (9.7) \end{aligned}$	$\begin{gathered} \hline 4.08 \\ (13.4) \end{gathered}$	$\begin{gathered} \hline 3.92 \\ (12.8) \end{gathered}$	$\begin{gathered} 6.23 \\ (20.4) \end{gathered}$	$\begin{gathered} \hline 6.16 \\ (20.2) \end{gathered}$	$\begin{gathered} 9.38 \\ (30.8) \end{gathered}$	$\begin{gathered} \hline 9.23 \\ (30.3) \end{gathered}$	$\begin{aligned} & 14.78 \\ & (48.5) \end{aligned}$	$\begin{aligned} & 1.35 \\ & (4.4) \end{aligned}$
$\begin{gathered} 2.54 \\ {\left[100^{\prime \prime}\right]} \end{gathered}$	$\begin{aligned} & \hline 1.70 \\ & (5.6) \end{aligned}$	$\begin{aligned} & \hline 2.11 \\ & (6.9) \end{aligned}$	$\begin{aligned} & 2.81 \\ & (9.2) \end{aligned}$	$\begin{gathered} \hline 4.08 \\ (13.4) \end{gathered}$	$\begin{gathered} \hline 3.71 \\ (12.2) \end{gathered}$	$\begin{gathered} 5.11 \\ (16.8) \end{gathered}$	$\begin{gathered} 4.92 \\ (16.1) \end{gathered}$	$\begin{gathered} 7.81 \\ (25.6) \end{gathered}$	$\begin{gathered} 7.74 \\ (25.4) \end{gathered}$	$\begin{aligned} & 11.76 \\ & - \\ & (38.6) \end{aligned}$	$\begin{aligned} & \hline 11.62 \\ & (38.1) \end{aligned}$	$\begin{aligned} & 18.55 \\ & (60.8) \end{aligned}$	$\begin{aligned} & 1.70 \\ & (5.6) \end{aligned}$
$\begin{gathered} 3.81 \\ {\left[150^{\prime \prime}\right]} \end{gathered}$	$\begin{aligned} & 2.57 \\ & (8.4) \end{aligned}$	$\begin{gathered} 3.19 \\ (10.5) \end{gathered}$	$\begin{array}{r} \hline 4.24 \\ (13.9) \end{array}$	$\begin{gathered} \hline 6.14 \\ (20.1) \end{gathered}$	$\begin{aligned} & 5.60 \\ & (18.4) \end{aligned}$	$\begin{array}{r} 7.71 \\ (25.3) \end{array}$	$\begin{gathered} \hline 7.41 \\ (24.3) \end{gathered}$	$\begin{aligned} & 11.75 \\ & (38.6) \end{aligned}$	$\begin{aligned} & 11.68 \\ & (38.3) \end{aligned}$	$\begin{aligned} & 17.71 \\ & (58.1) \end{aligned}$	$\begin{aligned} & 17.58 \\ & (57.7) \end{aligned}$	$\begin{aligned} & 27.97 \\ & (91.8) \end{aligned}$	$\begin{aligned} & 2.58 \\ & (8.5) \end{aligned}$
$\begin{gathered} 5.08 \\ {\left[200^{\prime \prime}\right]} \end{gathered}$	$\begin{gathered} 3.44 \\ (11.3) \end{gathered}$	$\begin{gathered} 4.27 \\ (14.0) \end{gathered}$	$\begin{gathered} 5.67 \\ (18.6) \end{gathered}$	$\begin{gathered} 8.20 \\ (26.9) \end{gathered}$	$\begin{gathered} 7.50 \\ (24.6) \end{gathered}$	$\begin{aligned} & 10.30 \\ & (33.8) \end{aligned}$	$\begin{array}{r} 9.91 \\ (32.5) \end{array}$	$\begin{aligned} & 15.70 \\ & (51.5) \end{aligned}$	$\begin{aligned} & \hline 15.61 \\ & (51.2) \end{aligned}$	$\begin{aligned} & 23.66 \\ & (77.6) \end{aligned}$	$\begin{gathered} 23.54 \\ (77.2) \end{gathered}$	$\begin{array}{r} 37.39 \\ (122.7) \end{array}$	$\begin{gathered} 3.45 \\ (11.3) \end{gathered}$
$\begin{array}{r} 7.62 \\ {\left[300^{\prime \prime}\right]} \end{array}$	$\begin{gathered} \hline 5.18 \\ (17.0) \end{gathered}$	$\begin{gathered} \hline 6.43 \\ (21.1) \end{gathered}$	$\begin{gathered} 8.53 \\ (28.0) \end{gathered}$	$\begin{aligned} & 12.33 \\ & (40.4) \end{aligned}$	$\begin{aligned} & 11.28 \\ & (37.0) \end{aligned}$	$\begin{aligned} & 15.49 \\ & (50.8) \end{aligned}$	$\begin{aligned} & 14.91 \\ & (48.9) \end{aligned}$	$\begin{gathered} 23.59 \\ (77.4) \end{gathered}$	$\begin{array}{r} 23.49 \\ (77.1) \end{array}$	$\begin{gathered} 35.56 \\ (116.7) \end{gathered}$	$\begin{gathered} 35.46 \\ (116.3) \end{gathered}$	$\begin{gathered} \hline 56.24 \\ (184.5) \end{gathered}$	$(-)$
$\begin{aligned} & 10.16 \\ & {\left[400^{\prime \prime}\right]} \end{aligned}$	$\begin{gathered} \hline 6.93 \\ (22.7) \end{gathered}$	$\begin{array}{r} 8.59 \\ (28.2) \end{array}$	$\begin{aligned} & \hline 11.39 \\ & (37.4) \end{aligned}$	$\begin{aligned} & 16.45 \\ & (54.0) \end{aligned}$	$\begin{aligned} & 15.07 \\ & (49.4) \end{aligned}$	$\begin{aligned} & 20.67 \\ & (67.8) \end{aligned}$	$\begin{aligned} & 19.90 \\ & (65.3) \end{aligned}$	$\begin{array}{r} 31.48 \\ \hline \text { (103.3) } \\ \hline \end{array}$	$\begin{gathered} 31.36 \\ (102.9) \end{gathered}$	$\begin{gathered} 47.46 \\ \hline \end{gathered}(155.7)$	$\begin{gathered} \hline 47.38 \\ (155.4) \\ \hline \end{gathered}$	$\begin{array}{r} 75.08 \\ (246.3) \end{array}$	$(-)$
$\begin{aligned} & 12.70 \\ & {\left[500^{\prime \prime}\right]} \\ & \hline \end{aligned}$	$\begin{gathered} 8.67 \\ (28.5) \end{gathered}$	$\begin{aligned} & 10.75 \\ & (35.3) \end{aligned}$	$\begin{aligned} & 14.25 \\ & (46.7) \end{aligned}$	$\begin{gathered} 20.58 \\ (67.5) \end{gathered}$	$\begin{aligned} & 18.86 \\ & (61.9) \end{aligned}$	$\begin{aligned} & 25.86 \\ & (84.8) \end{aligned}$	$\begin{aligned} & 24.90 \\ & (81.7) \end{aligned}$	$\begin{gathered} 39.37 \\ (129.2) \end{gathered}$	$\begin{gathered} 39.23 \\ (128.7) \\ \hline \end{gathered}$	$\begin{gathered} 59.36 \\ \hline \end{gathered}(194.7)$	$\begin{gathered} 59.30 \\ (194.6) \end{gathered}$	$\begin{array}{r} 93.93 \\ (308.2) \end{array}$	$\begin{gathered} - \\ (-) \end{gathered}$
$\begin{aligned} & 15.24 \\ & {\left[600^{\prime \prime}\right]} \end{aligned}$	$\begin{aligned} & 10.42 \\ & (34.2) \end{aligned}$	$\begin{aligned} & 12.91 \\ & (42.3) \end{aligned}$	$\begin{aligned} & 17.11 \\ & (56.1) \end{aligned}$	$\begin{aligned} & 24.70 \\ & (81.0) \end{aligned}$	$\begin{gathered} 22.64 \\ (74.3) \end{gathered}$	$\begin{aligned} & 31.05 \\ & (101.9) \end{aligned}$	$\begin{gathered} 29.89 \\ (98.1) \end{gathered}$	$\begin{gathered} 47.25 \\ (155.0) \end{gathered}$	$\begin{gathered} 47.11 \\ (154.6) \end{gathered}$	$\begin{gathered} 71.25 \\ \hline(233.8) \end{gathered}$	$\begin{array}{r} 71.221 \\ (233.7) \end{array}$	$\begin{aligned} & 112.77 \\ & (370.0) \end{aligned}$	$\begin{gathered} - \\ (-) \end{gathered}$

PT-DW740S (16:10 aspect ratio)

Diagonal image size [throw ratio]	Throw distance												
	$\begin{aligned} & \text { ET-DLE080 } \\ & \text { [0.8-1.0:1] } \end{aligned}$		$\begin{aligned} & \text { ET-DLE150 } \\ & \text { [1.4-2.0:1] } \end{aligned}$		Supplied Iens$[1.8-2.5: 1]$		$\begin{aligned} & \text { ET-DLE250 } \\ & \text { [2.4-3.8:1] } \end{aligned}$		$\begin{aligned} & \text { ET-DLE350 } \\ & {[3.8-5.7: 1]} \end{aligned}$		$\begin{aligned} & \text { ET-DLE450 } \\ & \text { [5.6-9.0:1] } \end{aligned}$		$\begin{gathered} \text { ET-DLE055 } \\ {[0.8: 1]} \end{gathered}$
	min.	max.											
$\begin{aligned} & 1.27 \\ & {\left[50^{\prime \prime}\right]} \end{aligned}$	$\begin{aligned} & \hline 0.87 \\ & (2.8) \end{aligned}$	$\begin{aligned} & \hline 1.09 \\ & (3.6) \end{aligned}$	$\begin{aligned} & 1.45 \\ & (4.7) \end{aligned}$	$\begin{aligned} & \hline 2.12 \\ & (6.9) \end{aligned}$	$\begin{aligned} & \hline 1.91 \\ & (6.3) \end{aligned}$	$\begin{aligned} & \hline 2.70 \\ & (8.9) \end{aligned}$	$\begin{aligned} & \hline 2.54 \\ & (8.3) \end{aligned}$	$\begin{gathered} 4.06 \\ + \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4.00 \\ & (13.1) \end{aligned}$	$\begin{gathered} \hline 6.11 \\ (20.1) \end{gathered}$	$\begin{gathered} \hline 5.96 \\ (19.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 9.60 \\ (31.5) \end{gathered}$	$\begin{aligned} & \hline 0.87 \\ & (2.9) \end{aligned}$
$\begin{aligned} & 2.03 \\ & {\left[80^{\prime}\right]} \end{aligned}$	$\begin{aligned} & \hline 1.42 \\ & (4.7) \end{aligned}$	$\begin{aligned} & \hline 1.77 \\ & (5.8) \end{aligned}$	$\begin{gathered} \hline 2.35 \\ (7.7) \\ \hline \end{gathered}$	$\begin{gathered} 3.42 \\ (11.2) \end{gathered}$	$\begin{gathered} \hline 3.11 \\ (10.2) \\ \hline \end{gathered}$	$\begin{gathered} 4.37 \\ \hline(14.3) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.12 \\ (13.5) \\ \hline \end{gathered}$	$\left.\begin{array}{r} 6.55 \\ + \\ \hline \end{array} 21.5\right)$	$\begin{gathered} \hline 6.48 \\ (21.3) \\ \hline \end{gathered}$	$\begin{gathered} 9.86 \\ +\quad(32.3) \\ \hline \end{gathered}$		$\begin{aligned} & \hline 15.53 \\ & (51.0) \end{aligned}$	$\begin{aligned} & \hline 1.42 \\ & (4.7) \end{aligned}$
$\begin{gathered} 2.54 \\ {\left[100^{\prime \prime}\right]} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1.78 \\ & (5.9) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2.22 \\ (7.3) \end{gathered}$	$\begin{aligned} & \hline 2.95 \\ & (9.7) \\ & \hline \end{aligned}$	$\begin{array}{r} 4.28 \\ (14.0) \end{array}$	$\begin{gathered} 3.90 \\ (12.8) \end{gathered}$	$\begin{gathered} 5.48 \\ (18.0) \end{gathered}$	$\begin{gathered} \hline 5.17 \\ (16.9) \\ \hline \end{gathered}$	$\begin{array}{r} 8.20 \\ +(26.9) \\ \hline \end{array}$	$\begin{gathered} \hline 8.13 \\ (26.7) \end{gathered}$	$\begin{aligned} & 12.36 \\ & (40.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 12.22 \\ & (40.1) \end{aligned}$	$\begin{aligned} & 19.49 \\ & (63.9) \end{aligned}$	$\begin{aligned} & \hline 1.79 \\ & (5.9) \\ & \hline \end{aligned}$
$\begin{gathered} 3.81 \\ {\left[150^{\prime \prime}\right]} \end{gathered}$	$\begin{aligned} & \hline 2.70 \\ & (8.9) \end{aligned}$	$\begin{gathered} \hline 3.36 \\ (11.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.45 \\ (14.6) \\ \hline \end{gathered}$	$\begin{gathered} 6.45 \\ (21.2) \end{gathered}$	$\begin{gathered} \hline 5.89 \\ (19.3) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 8.25 \\ & (27.1) \end{aligned}$	$\begin{gathered} \hline 7.79 \\ (25.5) \\ \hline \end{gathered}$	$\begin{aligned} & 12.35 \\ & (40.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 12.27 \\ & (40.2) \end{aligned}$	$\begin{aligned} & 18.61 \\ & (61.0) \end{aligned}$		$\begin{aligned} & 29.38 \\ & (96.4) \end{aligned}$	$\begin{aligned} & \hline 2.71 \\ & (8.9) \end{aligned}$
$\begin{gathered} 5.08 \\ {\left[200^{\prime \prime}\right]} \end{gathered}$	$\begin{gathered} 3.62 \\ (11.9) \end{gathered}$	$\begin{gathered} \hline 4.49 \\ (14.7) \end{gathered}$	$\begin{gathered} 5.95 \\ (19.5) \end{gathered}$	$\begin{gathered} 8.61 \\ (28.3) \end{gathered}$	$\begin{gathered} 7.88 \\ (25.8) \end{gathered}$	$\begin{aligned} & 11.03 \\ & (36.2) \end{aligned}$	$\begin{aligned} & 10.41 \\ & (34.2) \end{aligned}$	$\begin{aligned} & 16.49 \\ & (54.1) \end{aligned}$	$\begin{aligned} & 16.40 \\ & (53.8) \end{aligned}$	$\begin{aligned} & 24.85 \\ & (81.5) \end{aligned}$		$\begin{gathered} 39.28 \\ \hline(128.9) \end{gathered}$	$\begin{gathered} \hline 3.63 \\ (11.9) \end{gathered}$
$\begin{array}{r} 7.62 \\ {\left[300^{\prime \prime}\right]} \end{array}$	$\begin{gathered} \hline 5.45 \\ (17.9) \end{gathered}$	$\begin{gathered} \hline 6.76 \\ (22.2) \end{gathered}$	$\begin{gathered} \hline 8.96 \\ (29.4) \end{gathered}$	$\begin{aligned} & 12.95 \\ & (42.5) \end{aligned}$	$\begin{aligned} & \hline 11.85 \\ & (38.9) \end{aligned}$	$\begin{aligned} & 16.58 \\ & (54.4) \end{aligned}$	$\begin{aligned} & 15.65 \\ & (51.4) \end{aligned}$	$\begin{aligned} & 24.77 \\ & (81.3) \end{aligned}$	$\begin{aligned} & \hline 24.67 \\ & (80.9) \end{aligned}$	$\begin{array}{r} 37.35 \\ \hline \end{array}(122.5)$	$\begin{gathered} 37.25 \\ (122.2) \end{gathered}$	$\begin{gathered} 59.06 \\ \hline \text { (193.8) } \end{gathered}$	$(-)$
$\begin{aligned} & 10.16 \\ & {\left[400^{\prime \prime}\right]} \end{aligned}$	$\begin{gathered} 7.28 \\ (23.9) \end{gathered}$	$\begin{gathered} 9.02 \\ (29.6) \end{gathered}$	$\begin{aligned} & 11.96 \\ & (39.2) \end{aligned}$	$\begin{aligned} & 17.28 \\ & (56.7) \end{aligned}$	$\begin{aligned} & \hline 15.83 \\ & (51.9) \end{aligned}$	$\begin{aligned} & 22.13 \\ & (72.6) \end{aligned}$	$\begin{aligned} & 20.90 \\ & (68.6) \end{aligned}$	$\begin{gathered} 33.06 \\ (108.4) \end{gathered}$	$\begin{gathered} 32.94 \\ (108.1) \end{gathered}$	$\begin{gathered} 49.84 \\)(163.5) \end{gathered}$	$\begin{gathered} 49.76 \\ (163.3) \end{gathered}$	$\begin{gathered} 78.85 \\)(258.7) \end{gathered}$	$(-)$
$\begin{aligned} & 12.70 \\ & {\left[500^{\prime \prime}\right]} \end{aligned}$	$\begin{array}{r} \hline 9.11 \\ (29.9) \end{array}$	$\begin{aligned} & \hline 11.29 \\ & (37.0) \end{aligned}$	$\begin{aligned} & 14.96 \\ & (49.1) \end{aligned}$	$\begin{aligned} & 21.61 \\ & (70.9) \end{aligned}$	$\begin{aligned} & 19.80 \\ & (65.0) \end{aligned}$	$\begin{aligned} & 27.68 \\ & (90.8) \end{aligned}$	$\begin{aligned} & 26.14 \\ & (85.8) \end{aligned}$	$\begin{gathered} 41.34 \\ \hline \\ \hline \end{gathered}(135.6)$	$\begin{gathered} \hline 41.20 \\ (135.2) \end{gathered}$	$\begin{array}{r} 62.33 \\ (204.5) \end{array}$	$\begin{gathered} \hline 62.28 \\ (204.3) \end{gathered}$	$\begin{array}{r} 98.64 \\ \hline \\ \hline \end{array}(323.6)$	$\begin{gathered} - \\ (-) \end{gathered}$
$\begin{aligned} & 15.24 \\ & {\left[600^{\prime \prime}\right]} \end{aligned}$	$\begin{aligned} & 10.94 \\ & (35.9) \end{aligned}$	$\begin{aligned} & 13.56 \\ & (44.5) \end{aligned}$	$\begin{aligned} & 17.96 \\ & (58.9) \end{aligned}$	$\begin{array}{r} 25.94 \\ (85.1) \end{array}$	$\begin{gathered} 23.78 \\ (78.0)(\end{gathered}$	$\begin{gathered} 33.23 \\ (109.0) \end{gathered}$	$\begin{gathered} 31.39 \\ (103.0) \end{gathered}$	$\begin{gathered} 49.62 \\)(162.8) \end{gathered}$	$\begin{gathered} 49.47 \\ (162.3) \end{gathered}$	$\begin{gathered} 74.82 \\ (245.5) \end{gathered}$	$\begin{aligned} & 74.801 \\ & (245.4)(\end{aligned}$	$\begin{aligned} & 118.43 \\ &)(388.5) \end{aligned}$	$(-)$

PT-DX810S (4:3 aspect ratio)

Diagonal image size [throw ratio]	Throw distance												
	ET-DLE080 [0.8-1.0:1]		ET-DLE150 [1.3-2.0:1]		Supplied lens$[1.8-2.5: 1]$		$\begin{aligned} & \text { ET-DLE250 } \\ & \text { [2.4-3.7:1] } \end{aligned}$		ET-DLE350 [3.7-5.6:1]		$\begin{aligned} & \text { ET-DLE450 } \\ & \text { [5.5-8.9:1] } \end{aligned}$		$\begin{gathered} \text { ET-DLE055 } \\ {[0.8: 1]} \end{gathered}$
	min.	max.	min.	max.	min.	max.	min.	max.	min.	max	min.	max.	
$\begin{aligned} & 1.27 \\ & {\left[50^{\prime \prime}\right]} \end{aligned}$	$\begin{aligned} & \hline 0.81 \\ & (2.6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.01 \\ & (3.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.34 \\ & (4.4) \end{aligned}$	$\begin{aligned} & \hline 1.97 \\ & (6.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.78 \\ & (5.8) \end{aligned}$	$\begin{aligned} & 2.51 \\ & (8.2) \end{aligned}$	$\begin{gathered} 2.36 \\ (7.7) \end{gathered}$	$\begin{gathered} \hline 3.78 \\ (12.4) \end{gathered}$	$\begin{array}{r} 3.71 \\ (12.2) \end{array}$	$\begin{gathered} 5.68 \\ (18.6) \end{gathered}$	$\begin{gathered} \hline 5.53 \\ (18.1) \end{gathered}$	$\begin{gathered} 8.91 \\ (29.2) \end{gathered}$	$\begin{aligned} & \hline 0.81 \\ & (2.7) \end{aligned}$
$\begin{aligned} & 2.03 \\ & {\left[80^{\prime \prime}\right]} \end{aligned}$	$\begin{aligned} & 1.32 \\ & (4.3) \end{aligned}$	$\begin{aligned} & \hline 1.64 \\ & (5.4) \end{aligned}$	$\begin{aligned} & \hline 2.18 \\ & (7.2) \end{aligned}$	$\begin{gathered} \hline 3.18 \\ (10.4) \end{gathered}$	$\begin{gathered} \hline 2.89 \\ (9.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.06 \\ (13.3) \end{gathered}$	$\begin{gathered} \hline 3.83 \\ (12.6) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.09 \\ (20.0) \end{gathered}$	$\begin{gathered} \hline 6.02 \\ (19.8) \end{gathered}$	$\begin{gathered} \hline 9.17 \\ (30.1) \end{gathered}$	$\begin{gathered} \hline 9.02 \\ (29.6) \end{gathered}$	$\begin{gathered} \hline 14.44 \\ (47.4) \end{gathered}$	$\begin{aligned} & \hline 1.32 \\ & (4.3) \end{aligned}$
$\begin{gathered} 2.54 \\ {\left[100^{\prime \prime}\right]} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1.66 \\ & (5.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.07 \\ & (6.8) \end{aligned}$	$\begin{aligned} & \hline 2.74 \\ & (9.0) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3.98 \\ (13.1) \\ \hline \end{gathered}$	$\begin{gathered} 3.63 \\ (11.9) \\ \hline \end{gathered}$	$\begin{gathered} 5.10 \\ (16.7) \end{gathered}$	$\begin{gathered} \hline 4.80 \\ (15.8) \\ \hline \end{gathered}$	$\begin{gathered} 7.63 \\ +(25.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.56 \\ (24.8) \\ \hline \end{gathered}$	$\begin{aligned} & 11.50 \\ & (37.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 11.35 \\ & (37.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 18.12 \\ & (59.5) \end{aligned}$	$\begin{aligned} & \hline 1.66 \\ & (5.5) \\ & \hline \end{aligned}$
$\begin{gathered} 3.81 \\ {\left[150^{\prime \prime}\right]} \end{gathered}$	$\begin{aligned} & \hline 2.51 \\ & (8.2) \end{aligned}$	$\begin{gathered} \hline 3.12 \\ (10.2) \end{gathered}$	$\begin{gathered} \hline 4.14 \\ (13.6) \end{gathered}$	$\begin{gathered} \hline 6.00 \\ (19.7) \end{gathered}$	$\begin{gathered} \hline 5.48 \\ (18.0) \end{gathered}$	$\begin{gathered} \hline 7.68 \\ (25.2) \end{gathered}$	$\begin{array}{r} \hline 7.24 \\ (23.8) \end{array}$	$\begin{aligned} & 11.49 \\ & (37.7) \end{aligned}$	$\begin{aligned} & 11.41 \\ & (37.4) \end{aligned}$	$\begin{aligned} & \hline 17.31 \\ & (56.8) \end{aligned}$	$\begin{aligned} & \hline 17.18 \\ & (56.4) \end{aligned}$	$\begin{aligned} & \hline 27.33 \\ & (89.7) \end{aligned}$	$\begin{aligned} & \hline 2.52 \\ & (8.3) \end{aligned}$
$\begin{gathered} 5.08 \\ {\left[200^{\prime \prime}\right]} \end{gathered}$	$\begin{array}{r} \hline 3.36 \\ (11.0) \\ \hline \end{array}$	$\begin{gathered} \hline 4.18 \\ (13.7) \end{gathered}$	$\begin{gathered} 5.54 \\ (18.2) \end{gathered}$	$\begin{array}{r} 8.02 \\ (26.3) \end{array}$	$\begin{gathered} 7.33 \\ (24.0) \end{gathered}$	$\begin{aligned} & 10.26 \\ & (33.7) \end{aligned}$	$\begin{gathered} 9.69 \\ (31.8) \end{gathered}$	$\begin{aligned} & 15.34 \\ & (50.3) \end{aligned}$	$\begin{aligned} & 15.26 \\ & (50.1) \end{aligned}$	$\begin{aligned} & 23.13 \\ & (75.9) \end{aligned}$	$\begin{aligned} & 23.00 \\ & (75.5) \end{aligned}$	$\begin{gathered} 36.54 \\ (119.9) \end{gathered}$	$\begin{aligned} & \hline 3.38 \\ & (11.1) \end{aligned}$
$\begin{gathered} 7.62 \\ {\left[300^{\prime \prime}\right]} \end{gathered}$	$\begin{gathered} \hline 5.07 \\ (16.6) \end{gathered}$	$\begin{gathered} \hline 6.29 \\ (20.6) \end{gathered}$	$\begin{gathered} \hline 8.33 \\ (27.3) \end{gathered}$	$\begin{aligned} & 12.05 \\ & (39.5) \end{aligned}$	$\begin{aligned} & \hline 11.03 \\ & (36.2) \end{aligned}$	$\begin{aligned} & \hline 15.43 \\ & (50.6) \end{aligned}$	$\begin{aligned} & 14.57 \\ & (47.8) \end{aligned}$	$\begin{aligned} & 23.06 \\ & (75.6) \end{aligned}$	$\begin{aligned} & \hline 22.96 \\ & (75.3) \end{aligned}$	$\begin{gathered} 34.76 \\ \hline(114.0) \end{gathered}$	$\begin{gathered} \hline 34.66 \\ (113.7) \end{gathered}$	$\begin{gathered} 54.97 \\ \hline(180.3) \end{gathered}$	$(-)$
$\begin{gathered} 10.16 \\ {\left[400^{\prime \prime}\right]} \end{gathered}$	$\begin{gathered} 6.77 \\ (22.2) \end{gathered}$	$\begin{gathered} 8.40 \\ (27.5) \\ \hline \end{gathered}$	$\begin{gathered} 11.13 \\ (36.5) \\ \hline \end{gathered}$	$\begin{aligned} & 16.08 \\ & (52.8) \\ & \hline \end{aligned}$	$\begin{array}{r} 14.73 \\ (48.3) \\ \hline \end{array}$	$\begin{aligned} & 20.60 \\ & (67.6) \end{aligned}$	$\begin{array}{r} 19.45 \\ (63.8) \\ \hline \end{array}$	$\begin{gathered} 30.77 \\ (100.9) \end{gathered}$	$\begin{array}{r} 30.65 \\ (100.6) \end{array}$	$\begin{gathered} 46.39 \\)(152.2) \end{gathered}$	$\begin{gathered} 46.31 \\ (151.9) \end{gathered}$	$\begin{gathered} 73.39 \\ (240.8) \end{gathered}$	$(-)$
$\begin{aligned} & 12.70 \\ & {\left[500^{\prime \prime}\right]} \end{aligned}$	$\begin{gathered} \hline 8.48 \\ (27.8) \end{gathered}$	$\begin{aligned} & 10.51 \\ & (34.5) \end{aligned}$	$\begin{aligned} & 13.92 \\ & (45.7) \end{aligned}$	$\begin{aligned} & 20.12 \\ & (66.0) \end{aligned}$	$\begin{aligned} & 18.43 \\ & (60.5) \end{aligned}$	$\begin{aligned} & 25.77 \\ & (84.5) \end{aligned}$	$\begin{aligned} & 24.33 \\ & (79.8) \end{aligned}$	$\begin{array}{c\|} \hline 38.48 \\)(126.2) \end{array}$	$\begin{gathered} 38.35 \\ (125.8) \end{gathered}$	$\begin{gathered} 58.02 \\ \hline(190.4) \end{gathered}$	$\begin{gathered} \hline 57.96 \\ (190.2) \end{gathered}$	$\begin{gathered} 91.81 \\ \hline(301.2) \end{gathered}$	$\begin{gathered} - \\ (-) \end{gathered}$
$\begin{aligned} & 15.24 \\ & {\left[600^{\prime \prime}\right]} \end{aligned}$	$\begin{aligned} & \hline 10.18 \\ & (33.4) \end{aligned}$	$\begin{aligned} & 12.62 \\ & (41.4) \end{aligned}$	$\begin{aligned} & \hline 16.72 \\ & (54.9) \end{aligned}$	$\begin{aligned} & 24.15 \\ & (79.2) \end{aligned}$	$\begin{aligned} & 22.13 \\ & (72.6) \end{aligned}$	$\begin{gathered} \hline 30.94 \\ (101.5) \end{gathered}$	$\begin{aligned} & 29.22 \\ & (95.9) \end{aligned}$	$\begin{gathered} \hline 46.19 \\ \hline(151.5) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 46.05 \\ & (151.1) \end{aligned}$	$\begin{gathered} 69.65 \\)(228.5) \\ \hline \end{gathered}$	$\begin{array}{r} 69.61 \\ (228.4) \end{array}$	$\begin{aligned} & 110.23 \\ & (361.7) \end{aligned}$	$\begin{gathered} - \\ (-) \end{gathered}$

*9 PT-DZ570/DW530/DX500

*10 The operating temperature range is $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ when the нієн ALITIUDE MODE is set to on (for altitudes from $1,400 \mathrm{~m}$ to $2,700 \mathrm{~m}(4,593 \mathrm{ft}$ to 8,858 $\mathrm{ft})$ above sea level). Also, if the ambient temperature exceeds $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)\left(35^{\circ} \mathrm{C}\right.$ ($95^{\circ} \mathrm{F}$) in high altitude mode) when the projector is being used with lamp select set to dual and lamp power set to normal, the light output may be reduced approximately 20% to protect the projector.
*11 Featured on the PT-DZ770K/DZ770LK/DW740S/DW740LS. This function is not effective for some source combinations.
*12 When the standby mode is set to eco, network functions such as power on over the LAN will not operate. Also, only certain commands can be received for external control using the serial terminal.
*13 For 120 V AC power supply. 0.3 W for 200-240 V AC power supply.

Model		PT-DZ770K/DZ770LK	PT-DW740S/DW740LS	PT-DX810S/DX810LS
Power supply		$\begin{aligned} & 120 \mathrm{~V} \mathrm{AC}, 8 \mathrm{~A}, 50 / 60 \mathrm{~Hz}, \\ & 220-240 \mathrm{~V} \mathrm{AC}, 4.5 \mathrm{~A}, 50 / 60 \mathrm{~Hz} \end{aligned}$	120 V AC, 7.5 A, 50/60 Hz, 220-240 V AC, 4.3 A, 50/60 Hz	
Power consumption	$\begin{aligned} & 120 \mathrm{~V} \mathrm{AC} \\ & 220-240 \mathrm{~V} \mathrm{AC} \end{aligned}$	$830 \mathrm{~W}(880 \mathrm{VA})\left(0.2 \mathrm{~W}\right.$ when standBy mode set to $\mathrm{ECo}^{\star 1}$, 6 W when standby mode set to normal) $810 \mathrm{~W}(1,000 \mathrm{VA})\left(0.3 \mathrm{~W}\right.$ when standBy mode set to eco ${ }^{\star 1}$, 8 W when standey mode set to normal)	$790 \mathrm{~W}(830 \mathrm{VA})\left(0.2 \mathrm{~W}\right.$ when standeby mode set to eco ${ }^{\star 1}, 6 \mathrm{~W}$ when standeb mode set to normal) $760 \mathrm{~W}(950 \mathrm{VA})\left(0.3 \mathrm{~W}\right.$ when standby mode set to $\mathrm{Eco}{ }^{\star 1}, 8 \mathrm{~W}$ when standby mode set to normal)	
Dissipation BTU		U models: Max. 2,924 BTU/hour E, EJ models: Max. 2,822 BTU/hour	U models: max. 2,754 BTU/hour E, EJ models: max. 2,686 BTU/hour	
DLP ${ }^{\text {™ }}$ chip	Panel size Display method Pixels	17.0 mm (0.67 in) diagonal (16:10 aspect ratio) DLP ${ }^{\text {TM }}$ chip $\times 1$, LLP $^{\text {Tn }}$ projection system $2,304,000(1,920 \times 1,200)$ pixels	16.5 mm (0.65 inches) diagonal ($16: 10$ aspect ratio) DLP ${ }^{\text {w" }}$ chip $\times 1$, DLP ${ }^{\text {T" }}$ projection system $1,024,000(1,280 \times 800)$ pixels	17.8 mm (0.7 inches) diagonal (4:3 aspect ratio) DLP ${ }^{\text {TM }}$ chip $\times 1$, DLP $^{\text {TM }}$ projection system $786,432(1,024 \times 768)$ pixels
Lens PT-DZ770K/DW740S/DX810S		Powered zoom (throw ratio 1.7-2.4:1), powered focus F 1.7-1.9, f $25.6-35.7 \mathrm{~mm}$	Powered zoom (throw ratio 1.8-2.5:1), powered focus F 1.7-1.9, f $25.6-35.7 \mathrm{~mm}$	Powered zoom (throw ratio 1.8-2.5:1), powered focus F 1.7-1.9, f $25.6-35.7 \mathrm{~mm}$
PT-DZ770LK/DW740LS/DX810LS		Optional powered zoom/focus lenses and fixed-focus lens		
Lamp		300 W (max. 310 W) UHM lamp $\times 2$		
Screen size (diagonal)		1.27-15.24 m ($50-600 \mathrm{in}$), 1.27-5.08 m ($50-200 \mathrm{in}$) with the ET-DLE055, 16:10 aspect ratio		$1.27-15.24 \mathrm{~m}(50-600 \mathrm{in}), 1.27-5.08 \mathrm{~m}$ ($50-200 \mathrm{in}$) with the ET-DLE055, 4:3 aspect ratio
Brightness ${ }^{\text {*2 }}$		7,000 Im (dual-lamp, LAMP MODE: NORMAL)		8,200 Im (dual-lamp, LAMP MODE: Normal)
Center-to-corner uniformity ${ }^{\text {*2 }}$		90%		
Contrast*2		2,500:1 (full on/full off, CONTRAST MODE: HIGH ${ }^{\star 3}$)		2,000:1 (full on/full off, contrast mode: $\mathrm{HIGH}^{\star 4}$)
Resolution		$1,920 \times 1,200$ pixels	$1,280 \times 800$ pixels (input signals that exceed this resolution will be converted to $1,280 \times 800$ pixels.)	$1,024 \times 768$ pixels (Input signals that exceed this resolution will be converted to $1,024 \times 768$ pixels.)
Scanning frequency	HDMI/DVI-D RGB YPBPr (YCBCR) Video/S-Video	fu: $15-91 \mathrm{kHz}$, fv: $50-85 \mathrm{~Hz}$, dot clock: $25-162 \mathrm{MHz}$ ff: $15-91 \mathrm{kHz}$, fv: $50-85 \mathrm{~Hz}$, dot clock: 162 MHz or lower fh: 15.75 kHz , fv: 60 Hz [480i (525i)] ff: 37.50 kHz , fv: 50 Hz [720 (750)/50p] fh: 27.00 kHz , fv: 24 Hz [1080 (1125)/24p] fu: 31.50 kHz , fv: 60 Hz [480p (525p)] fh: $33.75 \mathrm{kHz}, \mathrm{fv}: 60 \mathrm{~Hz}$ [1035 (1125)/60i] fy: 27.00 kHz , fv: 48 Hz [1080 (1125)/24sF] fH: $15.63 \mathrm{kHz}, \mathrm{fv}: 50 \mathrm{~Hz}$ [576i (625i)] fH: $33.75 \mathrm{kHz}, \mathrm{fv}: 60 \mathrm{~Hz}$ [1080 (1125)/60i] fy: 33.75 kHz , fv: 30 Hz [1080 (1125)/30p] fH: 31.25 kHz , fv: 50 Hz [576p (625p)] fH: $28.13 \mathrm{kHz}, \mathrm{fv}: 50 \mathrm{~Hz}$ [1080 (1125)/50i] fy: 67.50 kHz , fv: 60 Hz [1080 (1125)/60p] fh: 45.00 kHz , fv: 60 Hz [720 (750)/60p] fh: 28.13 kHz , fv: 25 Hz [1080 (1125)/25p] fh: 56.25 kHz , fv: 50 Hz [1080 (1125)/50p] fH: 15.75 kHz , fv: 60 Hz [NTSC/NTSC4.43/PAL-M/PAL60], fH: 15.63 kHz , fv: 50 Hz [PAL/PAL-N/SECAM]		
Optical axis shift ${ }^{* 5}$	Vertical Horizontal	$+50 \%$ from center of screen (powered) $\pm 10 \%$ from center of screen (powered)	$+60 \%$ from center of screen (powered) $\pm 10 \%$ from center of screen (powered)	$\begin{aligned} & +50 \% \text { from center of screen (powered) }{ }^{* 6} \\ & \pm 10 \% \text { from center of screen (powered) } \end{aligned}$
Keystone correction range		Vertical: $\pm 40^{\circ}\left(\pm 30^{\circ}\right.$ with the ET-DLE055/DLE080)		
Installation		Ceiling/floor, front/rear		
Terminals	HDMI IN DVI-D IN RGB 1 IN RGB 2 IN VIDEO IN S-VIDEO IN SERIAL IN SERIAL OUT REMOTE 1 IN REMOTE 1 OUT REMOTE 2 IN LAN	HDMI 19-pin $\times 1$ (Deep Color*7, compatible with HDCP) 480p, 576p, 720/60p, 720/50p, 1080/60i, 1080/50i, 1080/24p, 1080/24sF, 1080/25p, 1080/30p, 1080/60p, 1080/50p, VGA $(640 \times 480)-$ WUXGA $(1,920 \times 1,200)^{\star 8}$, compatible with non-interlaced signals only, dot clock: $25-162 \mathrm{MHz}$ DVI-D $24-$ pin $\times 1$ (DVI 1.0 compliant, compatible with HDCP, compatible with single link only) 480p, 576p, 720/60p, 720/50p, 1080/60i, 1080/50i, 1080/24p, 1080/24sF, 1080/25p, 1080/30p, 1080/60p, 1080/50p, VGA $(640 \times 480)-$ WUXGA $(1,920 \times 1,200)^{\star 8}$, compatible with non-interlaced signals only, dot clock: $25-162 \mathrm{MHz}$ $\mathrm{BNC} \times 5(\mathrm{RGB} / \mathrm{YPBPR} / \mathrm{YCBCR} \times 1)$ D-Sub HD 15 -pin (female) $\times 1(\mathrm{RGB} / \mathrm{YPBPR} / \mathrm{YCBCr} \times 1)$ BNC $\times 1$ (composite video) Mini DIN 4 -pin $\times 1$ (S-Video) D-sub 9-pin (female) $\times 1$ for external control (RS-232C compliant) D-sub 9-pin (male) $\times 1$ for link control (RS-232C compliant) M3 $\times 1$ for wired remote control M3 $\times 1$ for link control (for wired remote control) D-sub 9-pin (female) $\times 1$ for external control (parallel) RJ-45 $\times 1$ (for network connection, 10Base-T/100Base-TX, compliant with PJLink ${ }^{\text {TM }}$)		
Cabinet materials		Molded plastic		
$\begin{aligned} & \text { Dimensions }(\mathrm{W} \times \mathrm{H} \times \mathrm{D}) \\ & \text { PT-DZ770K/DW740S/DX810S } \\ & \text { PT-DZ770LK/DW740LS/DX810LS } \end{aligned}$		$\begin{aligned} & 498 \times 175^{\star 9} \times 466 \mathrm{~mm}\left(19-19 / 32 \times 6-7 / 8^{\star 9} \times 18-11 / 32 \mathrm{in}\right)(\text { with supplied lens }) \\ & 498 \times 175^{\star 9} \times 432 \mathrm{~mm}\left(19-19 / 32 \times 6-7 / 8^{* 9} \times 17 \mathrm{in}\right)(\text { without lens }) \end{aligned}$		
$\begin{array}{ll} \hline \text { Weight*10 }^{* 10} & \text { PT-DZ770K/DW740S/DX810S } \\ & \text { PT-DZ770LK/DW740LS/DX810LS } \end{array}$		Approximately 16.3 kg (35.9 lbs) (with supplied Iens) Approximately $15.4 \mathrm{~kg}(34.0 \mathrm{lbs})$ (without lens)		
Operating environment		Operating temperature: $0-45^{\circ} \mathrm{C}\left(32-113^{\circ} \mathrm{F}\right)^{\star 11}$, operating humidity: $20 \%-80 \%$ (no condensation)		
Supplied accessories		Power cord, power cord secure lock, wireless/wired remote control unit, batteries (R6/AA type $\times 2$), software CD-R0M (Logo Transfer Software, Multi Projector Monitoring \& Control Software) ($\times 1$)		

*1 When the standby mode is set to eco, network functions such as power on over the LAN will not operate. Also, only certain commands can be received for external control using the serial terminal.
*2 Measurement, measuring conditions, and method of notation all comply with ISO 21118 international standards.
*3 Brightness becomes $3,500 \mathrm{Im}$ with contrast mode set to high.
*4 Brightness becomes $4,100 \mathrm{Im}$ with contrast mode set to high.
*5 Optical axis shift function cannot be operated when used with the ET-DLE055.
*6 +45\% from center of screen with the ET-DLE080

* 7 For the PT-DZ770K/DZ770LK only
*8 Compliant with VESA CVT-RB
*9 With legs at shortest position
*10 Average value. May differ depending on the actual unit.
*11 The operating temperature range is $0{ }^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $104^{\circ} \mathrm{F}$) when the high altitude mode is set to on (for altitudes from $1,400 \mathrm{~m}$ to $2,700 \mathrm{~m}(4,593 \mathrm{ft}$ to $8,858 \mathrm{ft})$ above sea level). Also, if the ambient temperature exceeds $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)\left(35^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{F}\right)\right.$ in high altitude mode) when
the projector is being used with lamp select set to dual and lamp power set to normal, the light output may be reduced approximately 20% to protect the projector.

NOTES ON USE

1. Do not install the projector in locations that are subject to excessive water, humidity, steam, or oily smoke. Doing so may result in fire, malfunction, or electric shock.
2. The projector uses a high-voltage mercury lamp that contains high internal pressure. This lamp may break, emitting a large sound, or fail to illuminate, due to impact or extended use.
3. The projector uses a high-wattage lamp that becomes very hot during operation. Please observe the following precautions:

- Never place objects on top of the projector while it is in operation.
- Make sure there is an unobstructed space of 500 mm (1 ft 8 in) or more around the projector's intake and exhaust openings.
- Do not stack projector units directly on top of one another for the purpose of multiple (stacked) projection. When stacking projector units, be sure to provide the amount of space indicated between them. These space requirements also apply to installation where only one projector unit is operating at one time and the other unit is used as a backup.
- If the projector is placed in a box or enclosure, the temperature of the air surrounding the projector must be between $0{ }^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ and $\left.104^{\circ} \mathrm{F}\right)$. Also, make sure the projector's intake and
exhaust openings are not blocked. Take particular care to ensure that hot air from the exhaust openings is not sucked into the intake openings. Even when the ambient temperature near the intake opening is $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ or lower, an accumulation of hot air inside the cabinet may cause the protective circuit to activate and shut down the projector. Please give ample consideration to the design with regard to ambient temperature conditions.

4. If the projector is to be operated continuously 24 hours a day / 7 days a week, use the dual-lamp optical system's alternating lamp operation (lamp changer) function. The projector cannot be operated continuously 24 hours a day / 7 days a week in dual-lamp mode. Allow a minimum of two hours per week of non-operation time per lamp if using the dual-lamp mode.
5. The lamp replacement cycle duration becomes shorter if the projector is operated repeatedly for short periods.

- The length of time that it takes for the lamp to break or fail to illuminate varies greatly depending
on individual lamp characteristics and usage conditions.
- The brightness of the lamp will gradually decrease with use.

PT-DZ770 Series projectors flexibly cover a variety of applications, such as sophisticated teleconference systems and digital signage.

Panasonic

JQA-QMA14392

